

NTE3882 Integrated Circuit NMOS, Counter Timer Control (CTC)

Description:

The NTE3882 Counter Timer Circuit (CTC) is a programmable, four channel device in a 28–Lead DIP type package that provides counting and timing functions for the NTE3880. The NTE3880 configures the NTE3882's four independent channels to operate under various modes and conditions as required.

The internal structure of the NTE3882 consists of an NTE3880 bus interface, internal control logic, four counter channels, and interrupt control logic. Each channel has an interrupt vector for automatic interrupt vectoring, and interrupt priority is determined by channel number with channel \emptyset having the highest priority.

The channel logic is composed of 2 registers, 2 counters and control logic. The registers include and 8-bit time constant register and an 8-bit channel control register. The counters include as 8-bit readable down counter and an 8-bit prescaler. The prescaler may be programmed to divide the system clock by either 16 or 256.

Structure:

- N-Channel Silicon Gate Depletion Load Technology
- Single 5V Supply
- Single Phase 5V Clock
- Four Independent Programmable 8–Bit Counter/16–Bit Timer Channels

Features:

- Each Channel may be Selected to Operate in Either a Counter Mode or Timer Mode
- Programmable Interrupts on Counter or Timer States
- A Time Constant Register Automatically Reloads, the Down Counter at Zero and the Cycle is Repeated
- Readable Down Counter Indicates Number of Counts-to-Go until Zero
- Selectable 16 or 256 Clock Prescaler for Each Timer Channel
- Selectable Positive or Negative Trigger may Initiate Timer Operation
- Three Channels have Zero Count/Timeout Outputs capable of Driving Darlington Transistors
- Daisy Chain Priority Interrupt Logic Included to Provide for Automatic Interrupt Vectoring without External Logic
- All Inputs and Outputs Fully TTL Compatible

Absolute Maximum Ratings:

Temperature Under Bias	0° to +70°C
Storage Temperature Range	\dots –65° to +150°C
Voltage On Any Pin With Respect to GND	–0.3V to +7V
Power Dissipation	

Note 1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

<u>DC Characteristics</u>: (T_A = 0° to 70°C, V_{CC} = 5V \pm 5% unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Clock Input Low Voltage	V _{ILC}		-0.3	-	0.45	V
Clock Input High Voltage	V _{IHC}		V _{CC} 0.6	-	V _{CC} +3	V
Input Low Voltage	V _{IL}		-0.3	-	0.8	V
Input High Voltage	VIH		2.0	-	V _{CC}	V
Output Low Voltage	V _{OL}	$I_{OL} = 2mA$	-	-	0.4	V
Output High Voltage	V _{OH}	I _{OH} = –250μA	2.4	-	_	V
Power Supply Current	I _{CC}	T _C = 250ns	_	-	120	mA
Input Leakage Current	I _{L1}	$V_{IN} = 0$ to V_{CC}	_	-	10	μΑ
Tri–State Output Leakage Current in Float	I _{LOH}	V_{OUT} = 2.4 to V_{CC}	_	-	10	μΑ
Tri–State Output Leakage Current in Float	I _{LOL}	$V_{OUT} = 0.4V$	_	_	-10	μΑ
Darlington Drive Current	I _{OHD}	V_{OH} = 1.5V, R_{EXT} = 390 Ω	-1.5	-	—	mA

<u>Capacitance</u>: ($T_A = +25^{\circ}C$, f = 1MHz unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Clock Capacitance	C _φ	Unmeasured Pins Returned to GND	-	-	20	pF
Input Capacitance	C _{IN}		_	-	5	pF
Output Capacitance	C _{OUT}		Ι	-	10	pF

<u>AC Characteristics</u>: ($T_A = 0^\circ$ to 70°C, $V_{CC} = 5V \pm 5\%$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Clock Cycle Time	TcC		400	-	Note 2	ns
Clock Width (High)	TwCH		170	-	2000	ns
Clock Width (Low)	TwCL		170	-	2000	ns
Clock Fall Time	TfC		-	-	30	ns
Clock Rise Time	TrC		-	-	30	ns
All Hold Times	Th		0	-	—	ns
CS to Clock ↑ Setup Time	TsCS(C)		250	-	—	ns
CE to Clock ↑ Setup Time	TsCE(C)		200	-	—	ns
$\overline{IORQ}\downarrow$ to Clock \uparrow Setup Time	TsIO(C)		250	-	—	ns
RD to Clock ↑ Setup Time	TsRD(C)		240	—	—	ns

Note 2. TcC = TwCH + TwCL + TcC + TrC.

<u>AC Characteristics (Cont'd)</u>: (T_A = 0° to 70°C, V_{CC} = 5V \pm 5% unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Clock \downarrow to Data Out Delay	TdC(DO)	Note 3	-	—	240	ns
Clock \uparrow to Data Out Float Delay	TdC(DOz)		-	-	230	ns
Data In to Clock [↑] Setup Time	TsDI(C)		60	-		ns
M1 to Clock ↑ Setup Time (INTA or M1 Cycle)	TsM1(C)		210	-	_	ns
$\overline{\text{M1}} \downarrow$ to IEO \downarrow Delay (Interrupt Immediately Preceding $\overline{\text{M1}}$)	TdM1(IEO)	Note 4, Note 5	-	-	300	ns
$\overline{IORQ}\downarrow$ to Data Out Delay (INTA Cycle)	TdIO(DOT)	Note 3	-	-	340	ns
$ E \downarrow$ to $ EO\downarrowD $ belay	TdIEI(IEOf)	Note 4	-	_	190	ns
IEI ↑ to IEO ↑ Delay (After ED Decode)	TdIEI(IEOr)	Note 4	-	-	220	ns
Clock \uparrow to INT \downarrow Delay	TdC(INT)	Timer Mode	-	_	TcT + 220	ns
CLR/TRG \uparrow to INT \downarrow (TsCTR(C) Satisfied)	TdCTK(INT)	Counter Mode	-	-	TcC + 230	ns
CLR/TRG \uparrow to INT \downarrow (TsCTR(C) Not Satisfied)	1		-	-	2TcC + 530	ns
CLK Cycle Time	TcCTR	Counter Mode	2TcC	-	_	ns
CLK/TRG Rise Time	TrCTR		-	—	50	ns
CLK/TRG Fall Time	TfCTR		-	-	50	ns
CLK/TRG Width (Low)	TwCTRL		200	-	_	ns
CLK/TRG Width (High)	TwCTRH		200	-	_	ns
CLK \uparrow to Clock \uparrow Setup Time for Immediate Count	TsCTR(Cc)	Counter Mode	300	-	_	ns
TRG \uparrow to Clock \uparrow Setup Time for Enabling of Prescaler on Following Clock \uparrow	TsCTR(Ct)	Timer Mode	210	_	-	ns
Clock ↑ to ZC/TO ↑ Delay	TdC(ZCTOr)		260	-	-	ns
Clock \downarrow to ZC/TO \downarrow Delay	1		190	-	-	ns

Note 3. Increase delay by 10ns for each 50pF increase in loading, 200pF maximum for data lines and 100pF for control lines.

Note 4. Increase delay by 10ns for each 10pF increase in loading, 100pF maximum.

Note 5. 2.5 TcC > (N-2) TdIEI(IEOF) + TdIM1(IEO) + TsIEI(IO).

Note 6. RESET must be active for a minimum of 3 clock cycles.

